
Bacalhau API overview

Note that in version 1.4.0 API logic and endpoints have

changed. Check out the release notes and updated API

description in the API documentation section.

Welcome to the official API documentation for Bacalhau.

This guide provides a detailed insight into Bacalhau's

RESTful HTTP APIs and demonstrates how to make the

most out of them.

Bacalhau prioritizes an "API-first" design, enabling users to

interact with their deployed systems programmatically. In

the v1.4.0 the API model was changed to include only

two endpoints, focused on orchestrating, querying and

managing your network nodes and jobs. Each endpoint has

a clear, separate environment and goal, allowing to manage

coordination between nodes, jobs, and executions more

effectively.

Overview

Bacalhau Docs v.1.4.0

https://docs.bacalhau.org/

The Majority of Bacalhau’s functionality is channeled

through the Orchestrator endpoint and its operations. It

handles user requests and schedules and it is critical for

creating, managing, monitoring, and analyzing jobs within

Bacalhau. It also provides mechanisms to query information

about the nodes in the cluster.

Here’s the job submission format, where you can tag a

YAML file with the job specifications or input the commands

with your CLI

Endpoint Prefix: All APIs are versioned and prefixed with

/api/v1 .

Default Port: By default, Bacalhau listens on port 1234 .

api/v1/orchestrator/

API endpoints

Orchestrator

Submit a job
curl -X PUT \
 -H "Content-Type: application/json" \
 -d '{
 "Job": {
 "Name": "test-job",
 "Namespace": "default",
 "Type": "batch",
 "Count": 1,
 "Labels": {
 "foo": "bar",
 "env": "dev"
 },
 "Tasks": [
 {
 "Name": "task1",
 "Engine": {
 "Type": "docker",
 "Params": {
 "Image": "ubuntu:latest",
 "Entrypoint": [
 "echo",
 "hello"
]
 }
 },
 "Publisher": {
 "Type": "noop",
 "Params": {}
 },
 "ResourcesConfig": {
 "CPU": "0.1",
 "Memory": "10mb"
 },
 "Network": {

"Type": "None"

This endpoint offers a convenient route to collate detailed

information about the Bacalhau node you're interacting

with, whether it's acting as the orchestrator or a compute

node. It provides you with insights into the node's health,

capabilities, and the deployed Bacalhau version.

Here’s the command structure for querying your current

node. You can check on its status and collate information

on its health and capabilities:

 Type : None
 },
 "Timeouts": {
 "ExecutionTimeout": 30
 }
 }
]
 }
 }' \
 http://0.0.0.0:20000/api/v1/orchestrator/jobs

{"JobID":"28c08f7f-6fb0-48ed-912d-a2cb6c3a4f3a","Eva

api/v1/agent/node

Is alive
curl 0.0.0.0:20000/api/v1/agent/alive

Agent

To handle large datasets, Bacalhau supports pagination.

Users can define the limit in their request and then

utilize the next_token from the response to fetch

subsequent data chunks.

To sort the results of list-based queries, use the order_by

parameter. By default, the list will be sorted in ascending

order. If you want to reverse it, use the reverse parameter.

Note that the fields available for sorting might vary

depending on the specific API endpoint.

By default, Bacalhau's APIs provide a minimized JSON

response. If you want to view the output in a more readable

format, append pretty to the query string.

Features

Pagination

Ordering

Pretty JSON Output

Being RESTful in nature, Bacalhau's API endpoints rely on

standard HTTP methods to perform various actions:

1. GET: Fetch data.

2. PUT: Update or create data.

3. DELETE: Remove data.

The behavior of an API depends on its HTTP method. For

example, /api/v1/orchestrator/jobs :

1. GET: Lists all jobs.

2. PUT: Submits a new job.

3. DELETE: Stops a job.

Understanding HTTP response codes is crucial. A 2xx

series indicates a successful operation, 4xx indicates

client-side errors, and 5xx points to server-side issues.

Always refer to the message accompanying the code for

more information.

HTTP Methods

HTTP Response Codes

Since /api/v1/requester/* was changed to

/api/v1/orchestrator/ in v1.4.0 , all

/api/v1/requester/* requests will result in 410 error.

Previous

API Guide

Next

Best Practices

Last updated 23 days ago

https://docs.bacalhau.org/references/api
https://docs.bacalhau.org/references/api/best-practices

